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Nonnegative matrix factorization (NMF) is a data analysis technique used
in a great variety of applications such as text mining, image processing,
hyperspectral data analysis, computational biology, and clustering. In
this letter, we consider two well-known algorithms designed to solve
NMF problems: the multiplicative updates of Lee and Seung and the hi-
erarchical alternating least squares of Cichocki et al. We propose a simple
way to significantly accelerate these schemes, based on a careful analy-
sis of the computational cost needed at each iteration, while preserving
their convergence properties. This acceleration technique can also be ap-
plied to other algorithms, which we illustrate on the projected gradient
method of Lin. The efficiency of the accelerated algorithms is empirically
demonstrated on image and text data sets and compares favorably with a
state-of-the-art alternating nonnegative least squares algorithm.

1 Introduction

Nonnegative matrix factorization (NMF) consists in approximating a non-
negative matrix M as a low-rank product of two nonnegative matrices W
and H; that is, given a matrix M ∈ R

m×n
+ and an integer r < min{m, n}, find

two matrices W ∈ R
m×r
+ and H ∈ R

r×n
+ such that WH ≈ M.

With a nonnegative input data matrix M, nonnegativity constraints on
the factors W and H are known to lead to low-rank decompositions with
better interpretation in many applications such as text mining (Shahnaz,
Berry, Langville, Pauca, & Plemmons, 2006), image processing (Lee & Seung,
1999), hyperspectral data analysis (Pauca, Piper, & Plemmons, 2006), com-
putational biology (Devarajan, 2008), and clustering (Ding, He, & Simon,
2005). Unfortunately, imposing these constraints is also known to render
the problem computationally difficult (Vavasis, 2009).
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Since an exact low-rank representation of the input matrix does not exist
in general, the quality of the approximation is measured by some criterion,
typically the sum of the squares of the errors on the entries, which leads to
the following minimization problem:

min
W∈Rm×r,H∈Rr×n

||M − WH||2F such that W ≥ 0 and H ≥ 0, (NMF)

where ||A||F = (
∑

i, j A2
i j)

1
2 denotes the Frobenius norm of matrix A. Most

NMF algorithms are iterative and exploit the fact that NMF reduces to
an efficiently solvable convex nonnegative least squares problem (NNLS)
when one of the factors, W or H, is fixed. Actually, it seems that nearly all
algorithms proposed for NMF adhere to the following general framework:

(0) Select initial matrices (W (0), H(0)) (e.g., randomly). Then for k =
0, 1, 2, . . ., do

(a) Fix H(k) and find W (k+1) ≥ 0 such that ||M − W (k+1)H(k)||2F < ||M −
W (k)H(k)||2F .

(b) Fix W (k+1) and find H(k+1) ≥ 0 such that ||M − W (k+1)H(k+1)||2F
< ||M − W (k+1)H(k)||2F .

More precisely, at each iteration, one of the two factors is fixed and the
other is updated in such a way that the objective function is reduced, which
amounts to a two-block coordinate descent method. Notice that the role of
matrices W and H is perfectly symmetric: if one transposes input matrix M,
the new matrix MT has to be approximated by a product HTWT , so that any
formula designed to update the first factor in this product directly translates
into an update for the second factor in the original problem. Formally, if the
update performed in step a is described by W (k+1) = update(M,W (k), H(k)),
an algorithm preserving symmetry will update the factor in step (b) accord-
ing to H(k+1) = update(MT , H(k)T ,W (k+1)T )T . In this letter, we consider only
such symmetrical algorithms and focus on the update of matrix W.

This update can be carried out in many different ways. The most natural
possibility is to compute an optimal solution for the NNLS subproblem,
which leads to a class of algorithms called alternating nonnegative least
squares (ANLS; see, Kim & Park, 2008). However, this computation, which
can be performed with active-set-like methods (Kim & Park, 2008; J. Kim
& Park, 2008), is relatively costly. Therefore, since an optimal solution for
the NNLS problem corresponding to one factor is not required before the
update of the other factor is performed, several algorithms compute an ap-
proximate solution of the NNLS subproblem, sometimes very roughly but
at lower computational cost, leading to an inexact two-block coordinate de-
scent scheme. We now present two such procedures: the multiplicative up-
dates (MU) of Lee and Seung and the hierarchical alternating least squares
(HALS) of Cichocki et al.
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In their seminal papers, Lee and Sung (1999, 2001) introduce the multi-
plicative updates:

W (k+1) = MU(M,W (k), H(k)) = W (k) ◦ [MH(k)T
]

[W (k)H(k)H(k)T ]
,

where ◦ (resp. [ . ]
[ . ] ) denotes the component-wise product (resp. division) of

matrices, and prove that each update monotonically decreases the Frobe-
nius norm of the error ||M − WH||F , that is, satisfies the description of steps
(a) and (b). This technique was originally proposed by Daube-Witherspoon
and Muehllehner (1986) to solve NNLS problems. The popularity of this
algorithm came along with the popularity of NMF, and many authors have
studied or used this algorithm or variants to compute NMFs (see Berry,
Browne, Langville, Pauca, & Plemmons, 2007; Cichocki, Amari, Zdunek,
& Phan, 2009). In particular, the Matlab Statistics Toolbox implements this
method.

However, MU have been observed to converge relatively slowly, es-
pecially when dealing with dense matrices M (Han, Han, Neumann, &
Prasad, 2009; Gillis and Glineur, 2008). Many other algorithms subsequently
have been introduced that perform better in most situations. For example,
Cichocki, Zdunek, and Amari (2007), Cichocki and Phan (2009) and, in-
dependently, several other authors (Ho, 2008; Gillis & Glineur, 2008; Li &
Zhang, 2009) proposed (HALS),1 a technique that successively updates each
column of W with an optimal and easy-to-compute closed-form solution.
In fact, when fixing all variables but a single column W:p of W, the problem
reduces to

min
W:p≥0

||M − WH||2F =
∥∥∥∥∥∥
⎛
⎝M −

∑
l �=p

W:lHl:

⎞
⎠ − W:pHp:

∥∥∥∥∥∥
2

F

=
m∑

i=1

∥∥∥∥∥∥
⎛
⎝Mi: −

∑
l �=p

WilHl:

⎞
⎠ − WipHp:

∥∥∥∥∥∥
2

F

.

Because each row of W affects only the corresponding row of the product
WH, this problem can be further decoupled into m independent quadratic
programs in one variable Wip, corresponding to the ith row of M. The
optimal solution W∗

ip of these subproblems can be easily written in closed

1Ho (2008) refers to HALS as rank-one residue iteration (RRI) and Li and Zhang (2009)
as FastNMF.
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form:

W∗
ip = max

(
0,

(Mi: −
∑

l �=p WilHl:)H
T
p:

Hp:HT
p:

)

= max

(
0,

Mi:H
T
p: −

∑
l �=p WilHl:H

T
p:

Hp:HT
p:

)
, 1 ≤ i ≤ m.

Hence, HALS updates successively the columns of W, so that W (k+1) =
HALS(M,W (k), H(k)) can be computed in the following way:

W (k+1)
:p = max

⎛
⎝0,

A:p − ∑p−1
l=1 W (k+1)

:l Bl p − ∑r
l=p+1 W (k)

:l Bl p

Bpp

⎞
⎠ ,

successively for p = 1, 2, . . . , r, where A = MH(k)T
and B = H(k)H(k)T

. This
amounts to approximately solving each NNLS subproblem in W with a
single complete round of an exact block-coordinate descent method with r
blocks of m variables corresponding to the columns of W (any other ordering
for the update of the columns of W is also possible).

Other approaches based on iterative methods to solve the NNLS sub-
problems include projected gradient descent (Lin, 2007a) or Newton-like
methods (Dhillon, Kim, & Sra, 2007; Cichocki, Zdunek, & Amari, 2006; see
also Cichocki et al., 2009).

We first analyze in section 2 the computational cost needed to update the
factors W in MU and HALS, then make several simple observations leading
in section 3 to the design of accelerated versions of these algorithms. In
principle these improvements can be applied to any two-block coordinate
descent NMF algorithm, as demonstrated in section 3.4 on the projected
gradient method of Lin (2007a). We mainly focus on MU, because it is
by far the most popular NMF algorithm, and on HALS, because it is very
efficient in practice. Section 4 studies convergence of the accelerated variants
to stationary points and shows that they preserve the properties of the
original schemes. In section 5, we experimentally demonstrate a significant
acceleration in convergence on several image and text data sets, with a
comparison with the state-of-the-art ANLS algorithm of J. Kim and Park
(2008).

2 Analysis of the Computational Cost of Factor Updates

In order to make our analysis valid for both dense and sparse input matrices,
we introduce a parameter K denoting the number of nonzero entries in
matrix M (K = mn when M is dense). Factors W and H are typically stored
as dense matrices throughout the execution of the algorithms. We assume
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that NMF achieves compression, which is often a requirement in practice.
This means that storing W and H must be cheaper than storing M: roughly
speaking, the number of entries in W and H must be smaller than the
number of nonzero entries in M, i.e., r(m + n) ≤ K.

Descriptions of algorithms 1 and 2 provide separate estimates for the
number of floating point operations (flops) in each matrix product compu-
tation needed to update factor W in MU and HALS. One can check that
the proposed organization of the different matrix computations (and, in
particular, the ordering of the matrix products) minimizes the total compu-
tational cost (e.g., starting the computation of the MU denominator WHHT

with the product WH is clearly worse than with HHT).
MU and HALS possess almost exactly the same computational cost (the

difference being a typically negligible mr flops). It is particularly interesting
to observe that:

� Steps 1 and 2 in both algorithms are identical and do not depend on
the matrix W (k).

� Recalling our assumption K ≥ r(m + n), computation of MH(k)T
(step

1) is the most expensive of the steps.

Therefore, this time-consuming step should be performed sparingly, and
we should take full advantage of having computed the relatively expensive
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MH(k)T
and H(k)H(k)T

matrix products. This can be done by updating W (k)

several times before the next update of H(k), that is, by repeating steps 3
and 4 in MU (resp. steps 3 to 6 in HALS) several times after the computa-
tion of matrices MH(k)T

and H(k)H(k)T
. In this fashion, better solutions of

the corresponding NNLS subproblems will be obtained at a relatively low
additional cost.

The original MU and HALS algorithms do not take advantage of this fact
and alternatively update matrices W and H only once per (outer) iteration.
An important question for us is now: How many times should we update
W per outer iteration? That is, how many inner iterations of MU and HALS
should we perform? This is the topic of the next section.

3 Stopping Criterion for the Inner Iterations

In this section, we discuss two strategies for choosing the number of inner
iterations. The first uses a fixed number of inner iterations determined by
the flop counts, and the second is based on a dynamic stopping criterion that
checks the difference between two consecutive iterates. The first approach
is shown empirically to work better. We also describe a third hybrid strategy
that provides a further small improvement in performance.

3.1 Fixed Number of Inner Iterations. Let us focus on the MU algo-
rithm. (A completely similar analysis holds for HALS because both methods
differ only by a negligible number of flops.) Based on the flop counts, we
estimate how expensive the first inner update of W would be relative to
the next ones (all performed while keeping H fixed), which is given by the
following factor ρW (the corresponding value for H will be denoted by ρH):

ρW = 2Kr + 2nr2 + 2mr2 + 2mr
2mr2 + 2mr

= 1 + K + nr
mr + m

.
(
ρH = 1 + K + mr

nr + n

)
.

Values of ρW and ρH for several data sets are given in section 5 (see Tables 1
and 2).

Notice that for K ≥ r(m + n), we have ρW ≥ 2 r
r+1 , so that the first inner

update of W is at least about twice as expensive as the subsequent ones.
For a dense matrix, K is equal to mn, and we actually have that ρW =
1 + n(m+r)

m(r+1)
≥ 1 + n

r+1 , which is typically quite large since n is often much
greater than r. This means, for example, that in our accelerated scheme, W
could be updated about 1 + ρW times for the same computational cost as
two independent updates of W in the original MU.

A simple and natural choice is to perform inner updates of W and H
a fixed number of times, depending on the values of ρW and ρH . Let us
introduce a parameter α ≥ 0 such that W is updated (1 + αρW ) times before
the next update of H and H is updated (1 + αρH ) times before the next
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Figure 1: Average of functions E(t) for MU using different values of α.
(Left) Dense matrices. (Right) Sparse matrices. Computed over four image data
sets and six text data sets, using two different values for the rank for each data
set and 10 random initializations (see section 5).

update of W. Let us also denote the corresponding algorithm MUα (MU0
reduces to the original MU). Therefore, performing (1 + αρW ) inner updates
of W in MUα has approximately the same computational cost as performing
(1 + α) updates of W in MU0.

In order to find an appropriate value for parameter α, we have performed
some preliminary tests on image and text data sets. First, we denote e(t) the
Frobenius norm of the error ||M − WH||F achieved by an algorithm within
time t and define

E(t) = e(t) − emin

e(0) − emin
, (3.1)

where e(0) is the error of the initial iterate (W (0), H(0)) and emin is the smallest
error observed among all algorithms across all initializations. Quantity E(t)
is therefore a normalized measure of the improvement of the objective func-
tion (relative to the initial gap) with respect to time. We have 0 ≤ E(t) ≤ 1
for monotonically decreasing algorithms (such as MU and HALS). The ad-
vantage of E(t) over e(t) is that one can meaningfully take the average over
several runs involving different initializations and data sets and display the
average behavior of a given algorithm.

Figure 1 displays the average of this function E(t) for dense (on the
left) and sparse (on the right) matrices using the data sets described in
section 5 for five values of α = 0, 0.5, 1, 2, 4. We observe that the original
MU algorithm (α = 0) converges significantly less rapidly than all the other
tested variants (especially in the dense case). The best value for parameter
α seems to be 1.
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Figure 2: Average of functions E(t) for HALS using different values of α.
(Left) Dense matrices. (Right) Sparse matrices. Same settings as in Figure 1.

Figure 2 displays the same computational experiments for HALS.2 HALS
with α = 0.5 performs the best. For sparse matrices, the improvement is
harder to discern (but still present); an explanation for that fact will be
given at the end of section 3.3.

3.2 Dynamic Stopping Criterion for Inner Iterations. In section 3.1, we
performed a fixed number of inner iterations. One could instead consider
switching dynamically from one factor to the other based on an appropriate
criterion. For example, it is possible to use the norm of the projected gradient
as proposed by Lin (2007a). A simpler and cheaper possibility is to rely
solely on the norm of the difference between two iterates. Noting W (k,l) the
iterate after l updates of W (k) (while H(k) is being kept fixed), we stop inner
iterations as soon as

||W (k,l+1) − W (k,l)||F ≤ ε||W (k,1) − W (k,0)||F, (3.2)

that is, as soon as the improvement of the last update becomes negligible
compared to the one obtained with the first update, but without any a priori
fixed maximal number of inner iterations.

Figure 3 shows the results for MU with different values of ε (we also
include the original MU and MU with α = 1 presented in the previous
section to serve as a reference). Figure 4 displays the same experiment for
HALS. In both cases, we observe that the dynamic stopping criterion is not
able to outperform the approach based on a fixed number of inner iterations

2Because HALS involves a loop over the columns of W and rows of H, we observed
that an update of HALS is noticeably slower than an update of MU when using Matlab
(especially for r 
 1), despite the quasi-equivalent theoretical computational cost. There-
fore, to obtain fair results, we adjusted ρW and ρH by measuring directly the ratio between
time spent for the first update and the next one using the cputime function of Matlab.
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Figure 3: Average of functions E(t) for MU using different values of ε,
with α = 0 and α = 1 for reference (see section 3.1). (Left) Dense matrices.
(Right) Sparse matrices. Same settings as in Figure 1.

Figure 4: Average of functions E(t) for HALS using different values of ε,
with α = 0 and α = 0.5 for reference (see section 3.1). (Left) Dense matrices.
(Right) Sparse matrices. Same settings as in Figure 1.

(α = 1 for MU, α = 0.5 for HALS). Moreover, in the experiments for HALS
with sparse matrices, it is unable to compete with the original algorithm.

3.3 A Hybrid Stopping Criterion. We showed in section 3.2 that using
a fixed number of inner iterations works better than a stopping criterion
based solely on the difference between two iterates. However, in some
circumstances, we have observed that inner iterations become ineffective
before their maximal count is reached, so that in some cases, it would be
worth switching earlier to the other factor.

This occurs in particular when the numbers of rows m and columns
n of matrix M have different orders of magnitude. For example, assume
without loss of generality that m � n, so that we have ρW 
 ρH . Hence, on
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the one hand, matrix W has significantly fewer entries than H (mr � nr),
and the corresponding NNLS subproblem features a much smaller number
of variables; on the other hand, ρW 
 ρH so that the above choice will lead to
many more updates of W performed. In other words, many more iterations
are performed on the simpler problem, which might be unreasonable. For
example, for the CBCL face database (see section 5) with m = 361, n = 2429,
and r = 20, we have ρH ≈ 18 and ρW ≈ 123, and this large number of inner
W-updates is typically not necessary to obtain an iterate close to an optimal
solution of the corresponding NNLS subproblem.

Therefore, to avoid unnecessary inner iterations, we propose combining
the fixed number of inner iterations proposed in section 3.1 with the supple-
mentary stopping criterion described in section 3.2. This safeguard proce-
dure will stop the inner iterations before their maximum number �1 + αρW

is reached, when they become ineffective (depending on parameter ε; see
equation 3.2). Algorithm 3 displays the pseudocode for the corresponding
accelerated MU, as well as a similar adaptation for HALS.

Figures 5 and 6 display the numerical experiments for MU and HALS,
respectively.

In the dense case, this safeguard procedure slightly improves perfor-
mance. We also note that the best values of parameter α now seem to be
higher than in the unsafeguarded case (α = 2 versus α = 1 for MU, and
α = 1 versus α = 0.5 for HALS). Worse performance of those higher val-
ues of α in the unsafeguarded scheme can be explained by the fact that
additional inner iterations, although sometimes useful, become too costly
overall if they are not stopped when they become ineffective.
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Figure 5: Average of functions E(t) for MU using different values of α and ε.
(Left) Dense matrices. (Right) Sparse matrices. Same settings as in Figure 1.

Figure 6: Average of functions E(t) for HALS using different values of α and ε.
(Left) Dense matrices. (Right) Sparse matrices. Same settings as in Figure 1.

In the sparse case, the improvement is rather limited (if not absent),
and most accelerated variants provide similar performance. In particular,
as already observed in sections 3.1 and 3.2, the accelerated variant of HALS
does not perform very differently from the original HALS on sparse ma-
trices. We explain this by the fact that HALS applied on sparse matrices is
extremely efficient, and one inner update already decreases the objective
function significantly. To illustrate this, Figure 7 shows the evolution of the
relative error,

Ek(l) = ||M − W (k,l)H(k)||F − ek
min

||M − W (k,0)H(k)||F − ek
min

,
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Figure 7: Evolution of the relative error Ek(l) of the iterates of inner iterations
in MU and HALS, solving the NNLS subproblem minW≥0 ||M − WH(k)||F with
r = 40 for the classic text data set (see Table 2).

of the iterate W (k,l) for a sparse matrix M, where ek
min = minW≥0 ||M −

WH(k)||F .3 Recall that (W (k,0), H(k)) denotes the solution obtained after k
outer iterations (starting from randomly generated matrices). For k = 1
(resp. k = 20), the relative error is reduced by a factor of more than 87%
(resp. 97%) after only one inner iteration.

3.4 Application to Lin’s Projected Gradient Algorithm. The acceler-
ating procedure described in the previous sections can potentially be ap-
plied to many other NMF algorithms. To illustrate this, we have modi-
fied Lin’s projected gradient algorithm (PG) (Lin, 2007a) by replacing the
original dynamic stopping criterion (based on the stationarity conditions)
by the hybrid strategy described in section 3.3. It is in fact straightfor-
ward to see that our analysis is applicable in this case, since Lin’s al-
gorithm also requires the computation of HHT and MHT when updating
W, because the gradient of the objective function in NMF is given by
∇W ||M − WH||2F = 2WHHT − 2MHT . This is also a direct confirmation that
our approach can be straightforwardly applied to many more NMF algo-
rithms than those considered in this letter.

Figure 8 displays the corresponding computational results, comparing
the original PG algorithm (available from Lin, 2007a) with its dynamic stop-
ping criterion (based on the norm of the projected gradient) and our vari-
ants, based on a (safeguarded) fixed number of inner iterations. It demon-
strates that our accelerated schemes perform significantly better in both
the sparse and dense cases (notice that in the sparse case, most accelerated

3We have used the active-set algorithm of J. Kim and Park (2008) to compute the
optimal value of the NNLS subproblem.
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Figure 8: Average of functions E(t) for the projected gradient algorithm of Lin
(2007a) and its modification using a fixed number of inner iterations. (Left)
Dense matrices. (Right) Sparse matrices. Same settings as in Figure 1.

variants perform similarly). The choice α = 0.5 gives the best results, and
the safeguard procedure does not help much, the reason being that PG con-
verges relatively slowly (we will see in section 5 that its accelerated variant
converges more slowly than the accelerated MU).

4 Convergence to Stationary Points

In this section, we briefly recall convergence properties of both MU and
HALS and show that they are inherited by their accelerated variants.

4.1 Multiplicative Updates. Daube-Witherspoon and Muehllehner
(1986) and later Lee and Seung (1999) showed that a single multiplicative
update of W (replacing W by W ◦ [MHT ]

[WHHT ] while H is kept fixed) guaran-
tees that the objective function ||M − WH||2F does not increase. Since our
accelerated variant simply performs several updates of W while H is un-
changed (and vice versa), we immediately obtain that the objective function
||M − WH||2F is nonincreasing under the iterations of algorithm 3.

Unfortunately, this property does not guarantee convergence to a sta-
tionary point of NMF, and this question on the convergence of the MU
seems to remain open (see Lin, 2007b). Furthermore, in practice, rounding
errors might set some entries in W or H to zero, and then multiplicative
updates cannot modify their values. Hence, it was observed that despite
their monotonicity, MU do not necessarily converge to a stationary point,
(see Gonzales & Zhang, 2005).

However, Lin (2007b) proposed a slight modification of MU in order to
guarantee the convergence to a stationary point. Roughly speaking, MU is
recast as a rescaled gradient descent method, and the step length is modified
accordingly. A simpler possibility is proposed by Gillis and Glineur (2008),
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who proved the following theorem (see also Gillis, 2011) where the influence
of parameter δ is discussed):

Theorem 1 (Gillis & Glineur, 2008). For any constant δ > 0, M ≥ 0 and any
(W, H) ≥ δ, ||M − WH||F is nonincreasing under4

W ← max
(

δ,W ◦ [MHT ]
[WHHT ]

)
, H ← max

(
δ, H ◦ [WTM]

[WTWH]

)
,

(4.1)

where the max is taken component-wise. Moreover, every limit point of the corre-
sponding (alternated) algorithm is a stationary point of the following optimization
problem

min
W≥δ,H≥δ

||M − WH||2F .

The proof of theorem 1 only relies on the fact that the limit points of
the updates are fixed points (there always exists at least one limit point
because the objective function is bounded below and nonincreasing under
the updates in equation 4.1). Therefore, one can easily check that the proof
still holds when a bounded number of inner iterations is performed, that
is, the theorem applies to our accelerated variant (see algorithm 3).

It is important to realize that this is not merely a theoretical issue and that
this observation can play a crucial role in practice. To illustrate this, Figure 9
shows the evolution of the normalized objective function (see equation 3.1)
using δ = 0 and δ = 10−16 starting from the same initial matrices W (0) and
H(0) randomly generated (each entry uniformly drawn between 0 and 1).
We observe that after some number of iterations, the original MU (i.e., with
δ = 0) gets stuck, while the variant with δ = 10−16 is still able to slightly
improve W and H. Notice that this is especially critical on sparse matrices
(see Figure 9, right) because many more entries of W and H are expected to
be equal to zero at stationarity. For this reason, in this letter, all numerical
experiments with MU use the updates from equation 4.1 with δ = 10−16

(instead of the original version with δ = 0).

4.2 Hierarchical Alternating Least Squares. HALS is an exact block-
coordinate descent method where blocks of variables (columns of W and
rows of H) are optimized in a cyclic way (first the columns of W, then the
rows of H, and so on). Clearly, exact block-coordinate descent methods al-
ways guarantee that the objective function will decrease. However, conver-
gence to a stationary point requires additional assumptions. For example,

4(W, H) ≥ δ means that W and H are component-wise larger than δ.
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Figure 9: Functions E(t) for δ = 0 and δ = 10−16. (Left) The (dense) ORL face
data set (see Table 1). (Right) The (sparse) classic text data set (see Table 2) with
r = 40.

Bertsekas (1999a, 1999b, proposition 2.7.1) showed that if the following
three conditions hold:

� Each block of variables belongs to a closed convex set (this is the case
here since the blocks of variables belong to either R

m
+ or R

n
+)

� The minimum computed at each iteration for a given block of variables
is uniquely attained

� The function is monotonically nonincreasing in the interval from one
iterate to the next

then exact block-coordinate descent methods converge to a stationary point.
The second and the third requirements are satisfied as long as no columns
of W and no rows of H become completely equal to zero: subproblems are
then strictly convex quadratic programs, whose unique optimal solutions
are given by the HALS updates (see section 1). In practice, if a column of W
or a row of H becomes zero, we reinitialize it to a small positive constant
(we used 10−16).5 We refer readers to Ho (2008) and Gillis and Glineur (2008)
for more details on the convergence issues related to HALS.

Because our accelerated variant of HALS is just another type of ex-
act block-coordinate descent method (the only difference being that the
variables are optimized in a different order: first several times the columns
of W, then several times the rows of H, and so on), it inherits all the above
properties. In fact, the statement of the theorem in Bertsekas (1999b) men-
tions that “the order of the blocks may be arbitrary as long as there is an
integer K such that each block-component is iterated at least once in every

5In practice, this seems to happen only if the initial factors are not properly chosen;
see Ho (2008).
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group of K contiguous iterations” (p. 6), which clearly holds for our ac-
celerated algorithm with a fixed number of inner iterations and its hybrid
variant.6

5 Numerical Experiments

In this section, we compare the following algorithms, choosing for our
accelerated MU, HALS, and PG schemes the hybrid stopping criterion and
the best compromise for values of parameters α and ε according to tests
performed in section 3:

� MU: The multiplicative updates algorithm of Lee and Seung (2001).
� A-MU: The accelerated MU with a safeguarded fixed number of inner

iterations using α = 2 and ε = 0.1 (see algorithm 3).
� HALS: The hierarchical alternating least squares algorithm of

Cichocki et al. (2007).
� A-HALS: The accelerated HALS with a safeguarded fixed number of

inner iterations using α = 0.5 and ε = 0.1 (see algorithm 3).
� PG: The projected gradient method of Lin (2007a).
� A-PG: The modified projected gradient method of Lin (2007a) using

α = 0.5 and ε = 0 (see section 3.4).
� ANLS: The alternating nonnegative least squares algorithm of J.

Kim and Park (2008), which alternatively optimizes W and H ex-
actly using a block-pivot active set method.7 Kim and Park showed
that their method typically outperforms other tested algorithms
(in particular MU and PG) on synthetic images and text data
sets.

All tests were run using Matlab 7.1 (R14), on a 3 GHz Intel Core 2
dual core processor. We present numerical results on image data sets
(dense matrices; see section 5.1) and on text data sets (sparse matrices;
see section 5.2). Code for all algorithms but ANLS is available online at
http://sites.google.com/site/nicolasgillis/.

5.1 Dense Matrices: Image Data Sets. Table 1 summarizes the charac-
teristics of the different data sets. For each data set, we use two different
values for the rank (r = 30, 60) and initialize the algorithms with the same 50
random factors (W (0), H(0)) (using independent and identically distributed

6Note, however, that the accelerated algorithms based solely on the dynamic stopping
criterion (see section 3.2) might not satisfy this requirement because in principle the
number of inner iterations for each outer iteration can grow indefinitely in the course of
the algorithm.

7Code is available online at http://www.cc.gatech.edu/∼hpark/.
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Table 1: Image Data Sets.

Data # Pixels m n r �ρW
 �ρH


ORLa 112 × 92 10,304 400 30, 60 358, 195 13, 7
Umistb 112 × 92 10,304 575 30, 60 351, 188 19, 10
CBCLc 19 × 19 361 2429 30, 60 12, 7 85, 47
Freyb 28 × 20 560 1965 30, 60 19, 10 67, 36

Note: �x
 denotes the largest integer smaller than x.
ahttp://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
bhttp://www.cs.toronto.edu/roweis/data.html.
chttp://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.

uniform random variables on [0, 1]).8 In order to assess the performance
of the different algorithms, we display individually for each data set the
average over all runs of the function E(t) defined in equation 3.1 (see
Figure 10).

First, these results confirm what was already observed by previous work:
PG performs better than MU (Lin, 2007a), ANLS performs better than MU
and PG (J. Kim & Park, 2008), and HALS performs the best (Ho, 2008).
Second, they confirm that the accelerated algorithms indeed are more effi-
cient: A-MU (resp. A-PG) clearly outperforms MU (resp. PG) in all cases,
while A-HALS is by far the most efficient algorithm for the tested databases.
It is interesting to notice that A-MU performs better than A-PG and only
slightly worse than ANLS, often decreasing the error as fast during the first
few iterations.

5.2 Sparse Matrices: Text Data Sets. Table 2 summarizes the character-
istics of the different data sets. The factorization rank r was set to 10 and 20.
For the comparison, we used the same settings as for the dense matrices.
Figure 11 displays for each data set the evolution of the average of func-
tions E(t) over all runs. Again the accelerated algorithms are much more
efficient. In particular, A-MU and A-PG converge initially much faster than
ANLS and also obtain better final solutions.9 A-MU, HALS and A-HALS
have the fastest initial convergence rates, and HALS and A-HALS generate
the best solutions in all cases. Notice that A-HALS does not always obtain
better final solutions than HALS (still this happens on half of the data sets),

8Generating initial matrices (W (0), H(0) ) randomly typically leads to a very large initial
error e(0) = ||M − W (0)H(0)||F . This implies that E(t) will get very small after one step
of any algorithm. To avoid this large initial decrease, we have scaled the initial matrices
such that argmin

α
||M − αW (0)H(0)||F=1; this simply amounts to multiplying W and H by

an appropriate constant; see Gillis and Glineur (2008).
9We also observe that ANLS no longer outperforms the original MU and PG algorithms

and only sometimes generates better solutions.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cs.toronto.edu/roweis/data.html
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
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Figure 10: Average of functions E(t) for different image data sets: ORL (top
left), Umist (top right), CBCL (bottom left), and Frey (bottom right).

Table 2: Text Mining Data sets.

Data m n r #nonzero Sparsity �ρW
 �ρH


Classic 7094 41,681 10, 20 223,839 99.92 12, 9 2, 1
Sports 8580 14,870 10, 20 1,091,723 99.14 18, 11 10, 6
Reviews 4069 18,483 10, 20 758,635 98.99 35, 22 8, 4
Hitech 2301 10,080 10, 20 331,373 98.57 25, 16 5, 4
Ohscal 11,162 11,465 10, 20 674,365 99.47 7, 4 7, 4
La1 3204 31,472 10, 20 484,024 99.52 31, 21 3, 2

Source: Zhong and Ghosh (2005).
Note: Sparsity is given in %: 100 ∗ #zeros/(mn).

because HALS already performs remarkably well (see the discussion at the
end of section 3.3). However, the initial convergence of A-HALS is in all
cases at least as fast as that of HALS.
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Figure 11: Average of functions E(t) for text data sets: Classic (top left), Sports
(top right), Reviews (middle left), Hitech (middle right), Ohscal (bottom left),
and La1 (bottom right).

6 Conclusion

In this letter, we considered the multiplicative updates of Lee and Seung
(2001) and the hierarchical alternating least squares algorithm of Cichocki
et al. (2007). We introduced accelerated variants of these two schemes based
on a careful analysis of the computational cost spent at each iteration. These
variants preserve the convergence properties of the original algorithms. The
idea behind our approach is based on taking better advantage of the most
expensive part of the algorithms by repeating a (safeguarded) fixed number
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of times the cheaper part of the iterations. In principle this technique can be
applied to most NMF algorithms. In particular, we showed that it can sub-
stantially improve the projected gradient method of Lin (2007a). We then
experimentally showed that these accelerated variants, despite the relative
simplicity of the modification, significantly outperform the original ones,
especially on dense matrices; they also compete favorably with a state-of-
the-art algorithm—the ANLS method of Kim and Park (2008). A direction
for future research would be to choose the number of inner iterations in a
more sophisticated way, with the hope of further improving the efficiency
of A-MU, A-PG, and A-HALS. Finally, we observed that HALS and its ac-
celerated version are the most efficient variants for solving NMF problems,
sometimes by far.
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